Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 193: 110117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453539

RESUMO

BACKGROUND AND PURPOSE: Although proton therapy is increasingly being used in the treatment of paediatric and adult brain tumours, there are still uncertainties surrounding the biological effect of protons on the normal brain. Microglia, the brain-resident macrophages, have been shown to play a role in the development of radiation-induced neurotoxicity. However, their molecular and hence functional response to proton irradiation remains unknown. This study investigates the effect of protons on microglia by comparing the effect of photons and protons as well as the influence of age and different irradiated volumes. MATERIALS AND METHODS: Rats were irradiated with 14 Gy to the whole brain with photons (X-rays), plateau protons, spread-out Bragg peak (SOBP) protons or to 50 % anterior, or 50 % posterior brain sub-volumes with plateau protons. RNA sequencing, validation of microglial priming gene expression using qPCR and high-content imaging analysis of microglial morphology were performed in the cortex at 12 weeks post irradiation. RESULTS: Photons and plateau protons induced a shared transcriptomic response associated with neuroinflammation. This response was associated with a similar microglial priming gene expression signature and distribution of microglial morphologies. Expression of the priming gene signature was less pronounced in juvenile rats compared to adults and slightly increased in rats irradiated with SOBP protons. High-precision partial brain irradiation with protons induced a local microglial priming response and morphological changes. CONCLUSION: Overall, our data indicate that the brain responds in a similar manner to photons and plateau protons with a shared local upregulation of microglial priming-associated genes, potentially enhancing the immune response to subsequent inflammatory challenges.


Assuntos
Terapia com Prótons , Humanos , Criança , Ratos , Animais , Prótons , Microglia , Relação Dose-Resposta à Radiação , Raios X
2.
Radiother Oncol ; 190: 110028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007043

RESUMO

BACKGROUND AND PURPOSE: Patients undergoing radiotherapy for head and neck cancer often experience a decline in their quality of life due to the co-irradiation of salivary glands. Radiation-induced cellular senescence is a key factor contributing to salivary gland dysfunction. Interestingly, mitochondrial dysfunction and cellular senescence have been reported to be strongly interconnected and thus implicated in several aging-related diseases. This study aims to investigate the role of mitochondrial dysfunction in senescence induction in salivary gland stem/progenitor cells after irradiation. MATERIALS AND METHODS: A dose of 7 Gy photons was used to irradiate mouse salivary gland organoids. Senescent markers and mitochondrial function were assessed using rt-qPCR, western blot analysis, SA-ß-Gal staining and flow cytometry analysis. Mitochondrial dynamics-related proteins were detected by western blot analysis while Mdivi-1 and MFI8 were used to modulate the mitochondrial fission process. To induce mitophagy, organoids were treated with Urolithin A and PMI and subsequently stem/progenitor cell self-renewal capacity was assessed as organoid forming efficiency. RESULTS: Irradiation led to increased senescence and accumulation of dysfunctional mitochondria. This was accompanied by a strong downregulation of mitochondrial fission-related proteins and mitophagy-related genes. After irradiation, treatment with the mitophagy inducer Urolithin A attenuated the senescent phenotype and improved organoid growth and stem/progenitor cell self-renewal capacity. CONCLUSION: This study shows the important interplay between senescence and mitochondrial dysfunction after irradiation. Importantly, activation of mitophagy improved salivary gland stem/progenitor cell function thereby providing a novel therapeutic strategy to restore the regenerative capacity of salivary glands following irradiation.


Assuntos
Doenças Mitocondriais , Qualidade de Vida , Animais , Camundongos , Senescência Celular/efeitos da radiação , Doenças Mitocondriais/metabolismo , Mitofagia , Glândulas Salivares , Células-Tronco/efeitos da radiação
3.
Sci Signal ; 14(712): eabk0599, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874744

RESUMO

Salivary glands are damaged by radiotherapy for head and neck cancers, which often culminates in radiation-induced hyposalivation and xerostomia that may be permanent. Here, we identified a central role for YAP in the regenerative response of the salivary gland. Activation of the Hippo signaling pathway inhibits the phosphorylation of YAP, leading to its nuclear translocation and transcriptional activity. Using mice with salivary gland injury induced by surgical ligation and salivary gland­derived organoids, we found that YAP nuclear localization in the salivary gland epithelium changed dynamically between homeostasis and regeneration. Whereas local injury had no effect on nuclear YAP localization in saliva-producing acinar cells, it triggered nuclear accumulation of YAP in saliva-transporting ductal cells. Injury also stimulated the proliferation of ductal cells, which were mainly quiescent under homeostatic conditions and in nonregenerating areas distal to the injury site, thus enabling salivary gland regeneration. Overexpressing YAP or driving YAP nuclear translocation by inhibiting upstream Hippo pathway kinases increased the capacity of mouse and human salivary gland cells, including human cells that had been irradiated, to form lobed organoids in vitro. Our results identify a YAP-driven regeneration program in salivary gland ductal cells that could be used to promote salivary gland regeneration after irradiation-induced damage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Serina-Treonina Quinases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases/genética , Glândulas Salivares/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
4.
Front Cell Dev Biol ; 9: 729136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692684

RESUMO

Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.

5.
Oral Dis ; 27(1): 52-63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32531849

RESUMO

OBJECTIVE: Hyposalivation-related xerostomia is an irreversible, untreatable, and frequent condition after radiotherapy for head and neck cancer. Stem cell therapy is an attractive option of treatment, but demands knowledge of stem cell functioning. Therefore, we aimed to develop a murine parotid gland organoid model to explore radiation response of stem cells in vitro. MATERIALS AND METHODS: Single cells derived from murine parotid gland organoids were passaged in Matrigel with defined medium to assess self-renewal and differentiation potential. Single cells were irradiated and plated in a 3D clonogenic stem cell survival assay to assess submandibular and parotid gland radiation response. RESULTS: Single cells derived from parotid gland organoids were able to extensively self-renew and differentiate into all major tissue cell types, indicating the presence of potential stem cells. FACS selection for known salivary gland stem cell markers CD24/CD29 did not further enrich for stem cells. The parotid gland organoid-derived stem cells displayed radiation dose-response curves similar to the submandibular gland. CONCLUSIONS: Murine parotid gland organoids harbor stem cells with long-term expansion and differentiation potential. This model is useful for mechanistic studies of stem cell radiation response and suggests similar radiosensitivity for the parotid and submandibular gland organoids.


Assuntos
Neoplasias de Cabeça e Pescoço , Radiação , Xerostomia , Animais , Camundongos , Organoides , Glândula Parótida , Glândulas Salivares , Glândula Submandibular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...